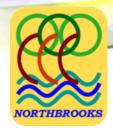
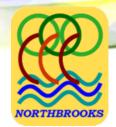


Structuring Reasoning Process in a Science Explanation through the use of Multiple Representations

Jeslyn Lee Jie Yee National Institute of Education Mr Sim Yong Ming Northbrooks Secondary School Dr Tang Kok Sing National Institute of Education WSA-EC Forum, 6 Nov 2014



Introduction


- Students are often required to address how and why a phenomenon happens
- Students lack the reasoning skills required to construct scientific explanation¹
- Role of multiple representations in reasoning process is often not clearly known
- Constructing scientific explanation is a disciplinary specific skill

^{1.} Sandoval, W. A., & Millwood, K. A. (2010). The Quality of Students ' Use of Evidence in Written Scientific Explanations, (July 2014), 37–41.

Disciplinary Literacy

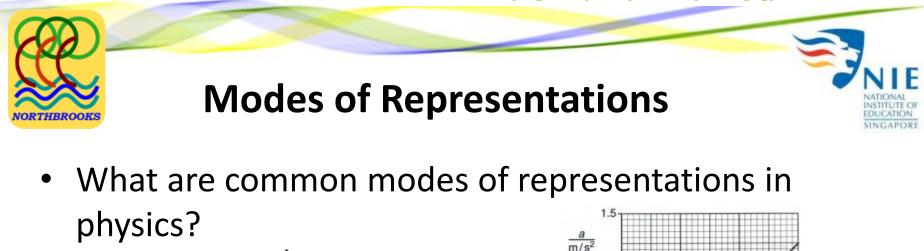
- Ability to participate using the tools of the discipline
 - 1. Specialized language
 - 2. Multimodal representations of the discipline
- Disciplinary literacy involves¹:
 - 1. Fundamental sense of literacy
 - Read, Write, Communicate with Science text
 - 2. Derived sense of literacy
 - Idea of Scientific Knowledge, Core Science Concepts, Key Science Relationship
- Importance of both content knowledge and disciplinary habits of mind²
- 1. Fang, Z. (2014). Disciplinary Literacy in Science: Developing Science Literacy Through Trade Books. *Journal of Adolescent & Adult Literacy*, *57*(4), 274–278.
- 2. Fang, Z. (2013). Disciplinary literacy: What you want to know about it. *Journal of Adolescent & Adult Literacy*, *56*(May), 627– 3 632.

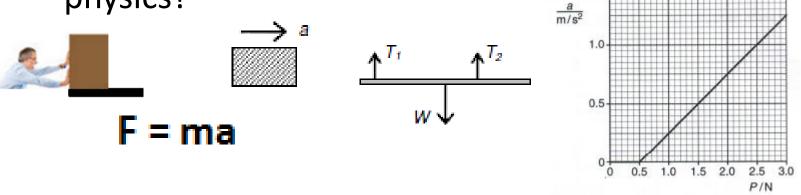
Scientific Explanation

- Importance of content knowledge and scientific reasoning skills¹ (Kuhn, Schauble, & Garcia-Mila, 1992)
- Content and context are also necessary²

Two stages of Causal Explanation ³	Evidence-based Scientific Explanation ²	Scaffold used to structure explanation
Known facts	Evidence	Principle/ Premise
Temporal or causal sequences which leads to	Reasoning	Reason
phenomenon	Claim	Outcome

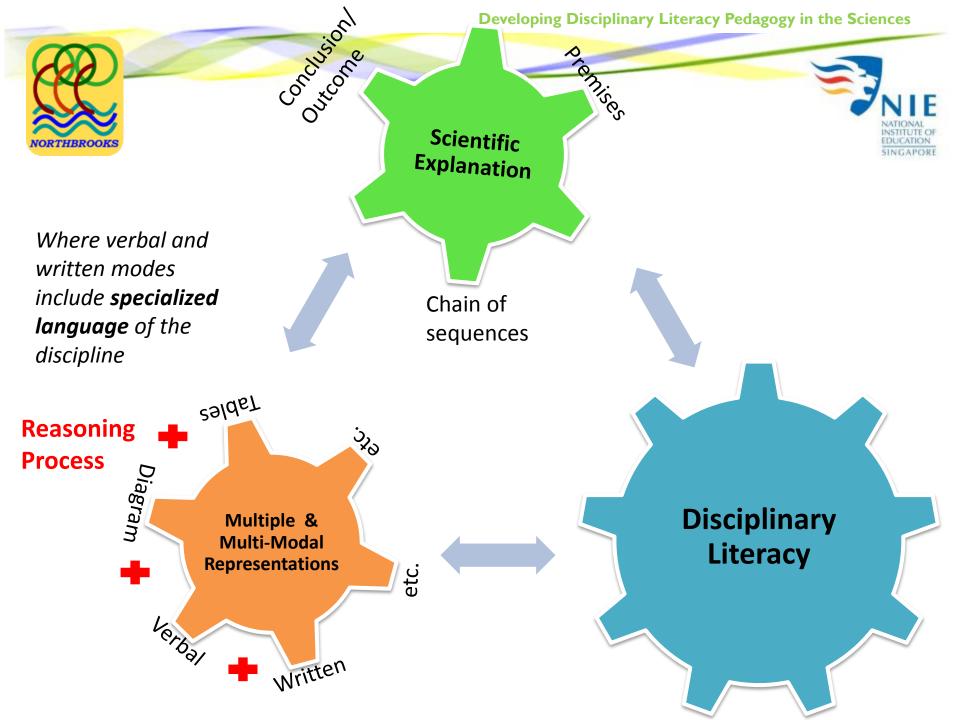
- 1. Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific reasoning. *Cognition and Instruction*, *9*(4), 285–327.
- 2. McNeill, K., & Lizotte, D. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. *Journal of the Learning Sciences* (October 2013), 37–41.
- 3. Veel, R. (1997). Learning how to mean-scientifically speaking: Apprenticeship into scientific discourse in the secondary school. *Genre and Institutions: Social Processes in the Workplace and School*, 161–195.

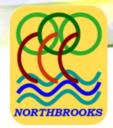



What is Reasoning?

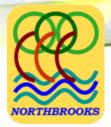
- Reasoning is the logic for why the evidence supports the claim, which can often include scientific principles.¹
- Indication of logical relation through conjunctions between clauses²

	Type of logico-semantic relations ³	Examples
	Additive	And
	Comparative	Likewise, but
Reason	Temporal	While, as
RedSUII	Consequential	Because, due to, since, results in, causes


- Reasoning process: Steps taken to guide students in considering scientific knowledge and contextual information in various aspects to construct a scientific explanation.
- 1. McNeill, K., & Lizotte, D. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. *The Journal of the* ..., (October 2013), 37–41.
- 2. Martin, J. R. (1992) English Text: System and Structure (Amsterdam: Benjamins).



 Students do not know how to make meaningful connections across multiple modes of representations¹


^{1.} Roth, W. M., & Tobin, K. (1997). Cascades of inscriptions and the re-presentation of nature: how numbers, tables, graphs, and money come to re-present a rolling ball. *International Journal of Science Education*, *19*(9), 1075-1091.

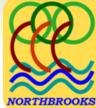
Research Context

- 2 year design research project
- Two Phases:
 - 1. Baseline observation
 - 2. Intervention study
- Secondary 3 Pure Physics Class
- 32 students

Lesson Design

Task	Activities
Task 1: Observation (Engage)	Video, demonstration or in-class experiment Demonstration / Hands-on-activity [5min]
Task 2: Students' discussion (Explore)	Group/ Pair discussion with writings Discussion, Writing: Prediction with initial Explanation; Observations; Post-observation Explanation [40 min]
Task 3: Introduction of Concepts: (Explain)	Introduction of terminologies; Teacher modelling process of problem solving /crafting explanation Newton's third law; T's modelling [12min]
Task 4: Writing Scaffolds (Explain)	Flowchart, tables, jumbled-up sequences, sentence starters, sub-heading PRO & Sentence starter [Homework]
Task 5: Consolidation/Extension (Elaborate)	Slightly modified question with scaffolds removed Pop Quiz [5 min]
Task 6: Peer and teacher assessment (Evaluate)	Reading and evaluating peer's writing; Student presenting answer 9 Teacher assessment

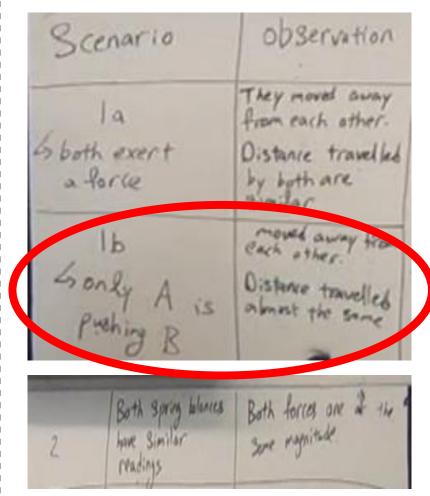
Lesson Design

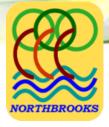

Task 1- Observations

ORTHBROOKS

Scenario	Observation
Scenario 1a [2 skaters pushing each other]	
Scenario 1b [1 skater pushes the other]	
Scenario 2 [Pulling of one end of the spring balances]	

Developing Disciplinary	Literacy	Pedagogy	in th	e Sciences
--------------------------------	----------	----------	-------	------------

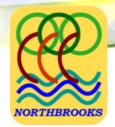

Video Time/Episode	Photo	Mode of Representation	Move pertaining to Reasoning Process	Structure of Explanation (P, R, O)
[2 min] Episode 1		Body Gesture		
[1:29:16 – 1:30:38] Episode 2	16 moved away from Each other. Distance travelled pushing B almost the same	Everyday Language		
[1:32:36 – 1:35:19] Episode 3	A B Por Fas Solo	Visual Free Body Diagram		
[1:35:20 – 1:38:03] Episode 4	Newton's 3rd Law of motion states that for every force Fas exerted on body B, there will be an opposite and gual force FsA on body A	Written Scientific Language		
[1:38:04 – 1:39:40] Episode 5	According to Amoton's 3rd law of motion a force by A acts on B and so an openiand opposite force will act on A Thus they moved away from each other	Written Scientific Language		



Episode 1- Observations

Scenario	Observation
Scenario 1a [2 skaters pushing each other]	
Scenario 1b [1 skater pushes the other]	
Scenario 2 [Pulling of one end of the spring balances]	

Episode 2 : Recall Observation


Episode 2: Elicit Recall Observation

- And then when we move on to 1b, where only Shawn is **pushing** Zac.
- T Sorry Yvonne?
- T When Shawn is **pushing** Zac right, what is the **observation**?
- S Both of them **move** back
- T Again they **move away** from each other.

Gonly

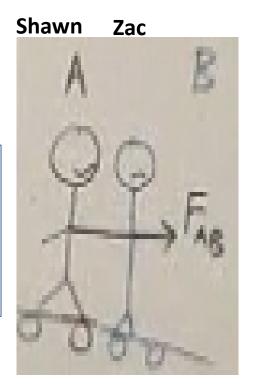
Explanation Structure: Premise, Reason, Outcome

Episode 3

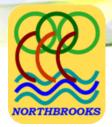
• [Video]

Episode 3: Re-represent/ Recall Observation

- T I have Shawn here, always with a weird smile.
- T He **exerts** a **force** on Zac...
- T So, A, let's call it A , A easier...and B
- T A pushes B, *so* where did the **force** come from? Explanation

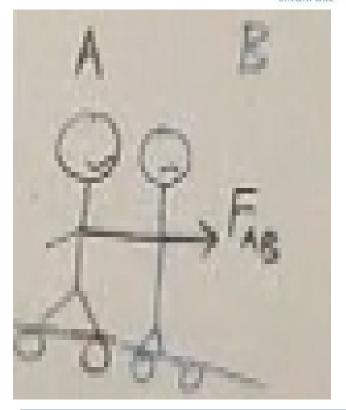

Structure:

Premise,

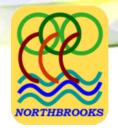

Reason,

Outcome

- S A
- T Come from A.
- T But it's acting on?
- S B
- т в
- T So basically we say that he exerts a force on him
 [Draw arrow and labels F_{AB}]

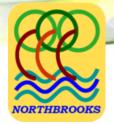


Stickman



Episode 3: Making Hypothesis

- T I am using black color *because*this represent the force fromShawn.
- T Okay, this make sense. So the force is acting on B. That's why B move forward.
- T Then why did A move backward according to you all?


Explanation Structure: Premise, <u>**Reason**</u>, Outcome

Episode 4

• [Video]

Episode 4 (I) : Making Connection

T When the blue color guy exert this black color force on him, what will the blue color's pack (**pointing to his own back**) do onto him?

- T He will **exert** an?
- S Blue color force
- T Opposite, yah, blue color **force** acting backwards like this.

T Eh, so I write this AB <u>because</u> the force comes from A acting on B.

T And from this one, <u>because</u> the moment they have contact like what you have observed or you have say there will an equal and opposite reaction force that is from B onto?

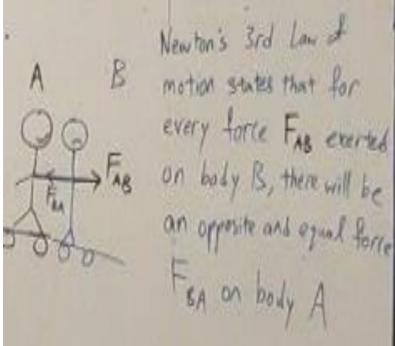
- S A
- T A

T **So** they are **acting** on different body. One force is on B, one force is on A.

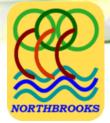
A B A Fas Fas

Explanation Structure: Premise, <u>Reason</u>, Outcom<u>e</u>

Episode 4 (II): Establish Newton's 3rd Law


T What you have observed here - is actually....this law called?

S Newton's third law


T Newton's third law of motion. Some of you have already read the textbook. SoNewton's third law of motion states this.

T Newton's third law of motion states that for every **force exerted** by...

T Sorry, every force exerted on body B,
there will be an opposite and equal force FB-A on body A. This is essentially Newton's
third law of motion.

Explanation Structure: <u>Premise</u>, Reason, Outcome

Episode 5: Crafting Explanation

T **So how do you craft the answer** for exam?

T We have to follow our **P R O**.

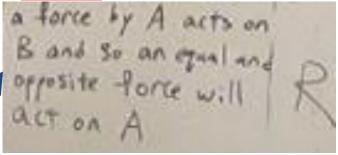
S Pro

T Yah, a pro.

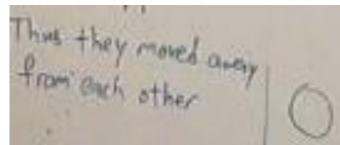
T Like principle, <u>so</u> that first thing that we write is....<u>according to newton's third law of</u> motion.

T I completed my **P, principle**.

T I am explaining the first scenario, a *force* by A acts on B, and <u>so</u> an *equal and opposite force* will act on A.


T This is my **reason**.

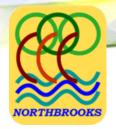
T And finally, <u>thus</u> they move away from each other.


T This is my **outcome** or my observation, **P** R O.

Premise Explanation (P, R, O) According to Newton's 3rd Raw of motion

<u>Reason</u>

Outcome

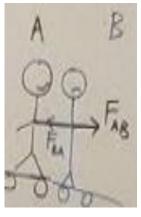

Crafting of Explanation

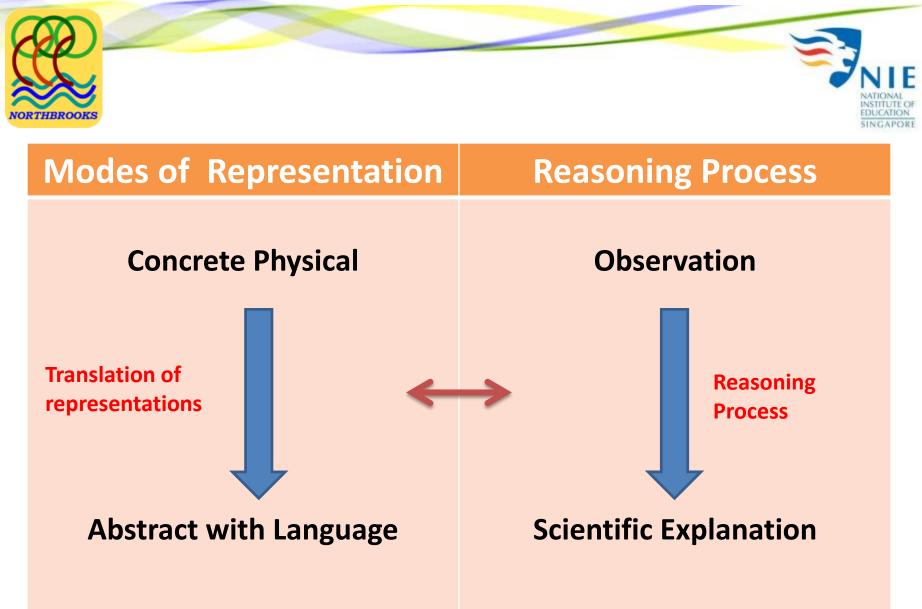
Scenario	observation	(P, R, O)	2	Both Spring blances have Similar readings	Both forces one if the some magnitude
la 6 both exert a force	They moved away from each other. Distance travelled by both are Similar	According to Newton's 3/d hav of motion a force by A acts on B and so an equal and oppressive form in		A B	Newton's 3rd Low of motion states that for every force FAB exerted on body B, there will be
Ib Sonly A is Puthing B	Distance travelly	act on A Thus they are	V	Frank Frag	an opposite and equal form Fea on body A

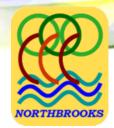
EDUCATION

SINGAPORE

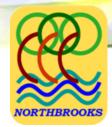
Video Time/Episode	Photo	Mode of Representation	Moves pertaining to Reasoning Process	Structure of Explanation (P, R, O)
[2 min] Episode 1		Body Gesture	Observation	Outcome (O)
[1:29:16 – 1:30:38] Episode 2	1b moved away from Sonly A is Distance travelled prohing B about the some	Everyday Language	Recall Observation	Outcome (O)
[1:32:36 – 1:35:19] Episode 3	A B	Visual Free Body Diagram (FBD)	Consider observation; Making hypothesis	Premise (P) Reason (R)
[1:35:20 – 1:38:03] Episode 4	A B motion states that for every force FAB exercised find FaB s on body B, there will be an opposite and equal force FBA on body A	 (I) Visual FBD + (II) Written Scientific Language 	Making Connection Science Principle	Reason (R) Premise (P)
[1:38:04 – 1:39:40] Episode 5	According to Ametonia 3 del law of relation a force by A acts on B and so an openiand opposite force will act on A Thus they moved away from ouch other	Written Scientific Language	Crafting Explanation	Premise (P) Reason (R) Outcome (O)


Physical Object/ Experience


Meaning making



EDUCATION

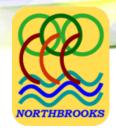


Findings

- Modelling of reasoning process could be embedded in two common practices:
 - 1. Sequential translation of multiple representations
 - 2. Discursive techniques to link up the rhetorical parts of the explanation

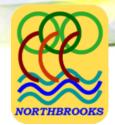
Discussion

- Multi-modal (graphic, verbal) aspect to make thinking explicit
- Three characteristic of effective classroom talk¹:
 - 1. Use of question-and-answer sequences to guide development of understanding and reasoning
 - 2. Use students' contributions as a resource for building shared knowledge
 - 3. Teach not just content, but also procedures for problemsolving and making sense of experience



Reasoning Process

		EDUC
Moves pertaining to Scientific	Components of Scientific Reasoning	SING
Reasoning	(i.e. type of information)	
Recall Observation; Interpreting	Contextual Information:	
Question	which contextual information is considered	
Recall Scientific Knowledge;	Scientific Information:	
Consider scientific information;	which relevant scientific principle is	
Stating Scientific Principle	considered	
Identify Course Factor / Koy Idea		
Identify Casual Factor/ Key Idea;	Hypothesis:	
Predict;	which hypothesis of a particular factor	
Hypothesize	(e.g. causal factor or key factor) is made	
	based on some information	
Construct Chain of Causal Sequences;	Connection:	
Apply Scientific information in the	which connection between the scientific	
Context	principle and contextual information is	
	made	
Stating Outcome; Evaluate sufficiency	Evaluation:	
of Reason to support Outcome	which evaluation is made	
	How representations can be used to fa	icilita
	·	


connection making?

Implications

- Representations as tools which could be used to scaffold scientific reasoning
- Greater awareness of the unique role each representation plays in scaffolding and modelling of scientific reasoning
- Making procedures pertaining to reasoning more explicit
- Future research on the impact of more explicit structuring of reasoning process

Thank you!

Contact us:

Jeslyn LEE Jie Yee jieyee.lee@nie.edu.sg

SIM Yong Ming sim yong ming@moe.edu.sg

TANG Kok Sing <u>koksing.tang@nie.edu.sg</u>